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PREFACE

The follo@ing report is divided into four parts. The first is

a2 discussion of the aﬁplication of Kalman filter theory to systems

with time deléy. Application to the "inlet problem" is included in

the appendix. The nonlinear Kalman equations were solved by con-
e

verting to a set of discrete equations (as discussed b& Meditch) .
Further work is planned which will develop a Qore general computa-
tional procedurg for more than one time delay. Also thé problem with
a large variety of measurements and states is being attacked;

The next problem is similar byt the noise and time delay are
%ot included in ghe'ﬁodel. An appropriate feedback contrbllér is
described by a set of parameters which specify the gain, pole, and
zero locations. These parameters are varied to detéimine.the

—~

conbination of parameter values which mininize the unstart ﬁziggfggxx

This was done by plotting the number of unstarts as a function of

two of the parameters. The stability of the system was facilitated

by having a pole-zero excess of two which requires that the feedback
- —

conpensator have more zeros than poles., The requisite number of
(__\-\.

poles could be added to whem the conpensator is actually built at

an appropriately high frequency.

The next section includes a discussion of estimation of the

e

output matrix when noisy measurements are nmade of both the states

and the output. Normal least squares estimation results in an

estinate which has a fixed error even for a large number of measure-

nents. This bias can be removed by modifying the objective function

i



and then lirearizing the resulting equations for the estimates of the

outptt matrix. The resulting estimate is not only linear but it
alsc is iterative., That is, a new estimate can be made as more
measurements are taken without having to store all the past values

of the state and output.

The final section is a detailed mathematical investigation of

the properties of a uniform random search for the maximum of a

e e it e,

function of several parameters. As the fiﬁai pagé points out,

R ——
in the absence of some regularity to the function ip the search
region only a very close inspection of the fuuctién will suffice., 1In
this most difficult situation a randbm search will do the job. How

well it can do the job is thoroughly explored in botﬁ the case of

exact and noisy measurements of the function.

T. L. Williams

ii



OFTIHAL CONTROL OF LINEAR SYSTEMS WITH TIME DELAY,
PLANT NOISE AND OBSERVATION NO1SE
The following paragraphs de§;10p an optimal control for a linear
systeﬁ whose measured outpu; is a delayéd linea? combination of the -
system states under a quadratic performaﬁcé index. It includés fhe
effects of piant and observation noise. The 0ptim§1 control is
generated by a cascade combinat;on of a Kalman filter, a lineaf
predictor and an optimal controller. The basis for muéh of this work
was done by Kleinménlll]
It is assumed that the plant is time-invariant -and may be
expressed by:
'~\i(c) = Fx(t) + Cu(t) + w(t) (1)
2(t) = Hx(t - ) + v(t - 1) (2)
where w(t) is théuélant_noiée and v(t) is the me;surement noiée with
the following autocorrelation functions
Efu(t)w’ ()] = Q3(t - 0) (3)
E[v(6)v'(0)] = RS(t - 0) %)
The noise w(z) is preéumedAstatistically independent from the noise
v(t). The system is shown in block disgram form in Figure 1. The

optimal control of the plant is achieved in three steps.

1. The optimal estimate: §(t - 1) from z{t)

2. The optimal prediction: Q(t) from ﬁ(t - 1)

3. The optimal control: u(t) from X(t)

There will be some feedback between the blocks in Figure 2, but the

diagram shows the essential form of the solution.



(3 %H

18-

.\

POTI0x3u0) 9q 03 JuwTg Jo weidwyQ MoOTg °T 9INn3Tg

N\

i -

NV

AN

(3)a

()=

]

L}{/
Ay

(3%

\
2
7

()

(30

(

uvs.



b e ey

padoToaaq @q 03 I9TT033u0) Tewridp Jo wexBerq }VOYg POZTIRILGURY -7 danIrg

x03vwyasy
Tewy3do

husatan!
2039FpPsag N _ 9T[03IU0C)
> Tewyado 5 Tewyadp

(3-3)% “ O
| |
“
!

JueTg £
(3)2 o~ (3)n




4

The solution is achieved by'consiaering plants with the foliowing

characteristics: _ o ) . o

1. "Linear system with output z(t) = x(t) =~ (This yields thé
opfimal controller in Figure 2).

2. Linear system with delayed output z(t) = x(z - 7). (This

yielés the optimal predictor with the same controller achieved

Jin (1)).

3. Llinear system with delayed output and measurement noise

i(t) = Hx(t -‘1)>+ v(t - 1). This yields the optimal estimator

with the same predictor as (2) and the same controller as (1)) .

I. Linear System with Output z(t) = x(t):

With the plant equations:

x(t) = Fx(t) + Cu(t) + w(t) ) (5)
z(t) = x(t) (6)
1t is desired to minimize the quadratic cost functional
- T ‘ =
J(u) = E{ lim. 1 I‘[x(+) 'Ax(t) + u'(t)Bu(t) Jde} ¢))
. T ,
T ;
o
The solution to this problem is well-knownlz]
u®(e) = S(e)x(t]t) (8)
where S(t) = -B"ich(r) ()

vhere W(t) is the solution to the Matrix-Ricatti equation
W(E) = -F'U(t) - W(OF + W(L)CB Ic'u(e) - A (10)
The value of the performance index is
J(ux) = trace { W@ (1)

The solution is shown in Figure 3.



‘w(t)
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Figure 3. Optimal Control of Plant with no Time )
Delay and no Measurement Noise .



J1. Linear System with OQutput z(t) = x({t -~ ©)

The plant and output equations are now -
%(t) = Fx(t) + Cu(t) + w(t) . (12)
2(t) = x(t - 1) (13)
It is dcsire? to determine the optimal control u(t)‘to minimize
the same quadfatic éost functional (7) as above. This is done by

investigating the prediction process:

2¢t) = E{x(t)|2(0), 0 < t} (14)

_In order to generate R{t), note that since

2(t) = x(t ~ 1)
that 2(t) = x(t - 1) (15)
or x(t) = z(t + 1) (16)

Substitutiﬂg in the equations (12) and (13):
x(t) = Fx{t) + Cu(t) + w(t)
z(t) = x(t - 1)
= Fx(t : 1) + Cult - 1) + w(t - 1)
or, ‘ z(t) = Fzét) + Cg(t - 1) %’w(t ; 1)’ (17)
Since thé control input u(t) is a deterministic process, and sincg»
the system is linear, we define zu(t) to be the contribution of z(t)
due to u(t).
' 2(t) = z (t) + x(E) (18)
where r(t) is the contribution of z(t) due to;noise. (17) may then
be rewritten |

z(t) = Flzu(t) + r(t)] + Cu(t - 1) + w(t - 1) (19)
(19) may, in turn, be written as two independent equations ’
iu(t) « qu(t) + Cult - 1) (20)

T(t) = Fr(t) + w(t - 1) 2V



where (20) relates deterministic inputs and outputs and (21) relates
nolisy inputs and-outputs. This sepgrétion.is_po§§i5;e because of
the linear system. From (14), 4

&) = E{x(t)]|2(@), 0 2 ¢}
since. . x(t) = 2(t + 1)%= zu(t + 1) +.xr(t + 1)
then ﬁ(ts = E{zu(: + 1) + r(t + M |z(0), 0 < t}

-'a{zg(c +0]z20), 0 < t} + Elr(t + ©)]z(0), 0 < t}

= zu(t + 1) + E{r(t + 1)[r(&); ) f_t} (22)>‘_

The secoﬁd term of (22) becomes
E{p(t + 1)[r(o), ¢ < t}= eFTr(t)
since (t) is white néise.[3l Therefore (22) becomes
2(t) =z (t+ 1) + eFTx(t) ' (23)
From the definition of x(t)} given in (14),
£¢t) = Elx(t) |z(0), 0 < ¢} (14)

we have generated X(t), the least mean-squared error prediction of

x(t). The implementatidn of (23) is shown in Figure 4. As indicated
in Figure 4, the optimal controller remains to be determined. First,
we develop the appropriate system equations. Taking the derivative
of both sides of (23) results in

a . Ft.

x(t) = z,(t + 7) + e '1(t) (24)

Substituting from (20) and (21) in {(24):

() = Pz (t + %) + Cu(t) + e [Fr(t) + w(t - 1)) ~(25)
Substituting from (?3) for zu(t + 1), | ~
2(t) = Fx(t) - FeFTr(t) + Cu(e) + eF'Fr(t) + ef Tw(t - 1) (26)

Nothing that Fe' ¥ m eFTF, (26) becomes ' :
£(t) = FR() + cu(e) + e fuce - 1) @7

The optimal controller for the system expressed by (27) is

determined by the minimization of the quadratic cost functional -

w
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First, it is noted that |
E{x' (0)Ax(t) } = E{IR(E) + e(t) J'A[R() + e(t)]}
= E{2(t) 'a%(t)} + E{R(t) 'ae(t) } -
+ Ele(t) a%(e) } + Ede(t) tae(r) }
- B2 A0 ) + Ble(t) he (D)) (28)
Since E{g(c)'e:(c)} e Efe(t) 'x(t)} = O when 2(t) is the least mean
square error estimate of x(t). | Hence J(u) can be written (assuming

interchange of lim{"} and E{"} operators}.

T .
J(u) = lim {-;- E{ I [e(t) *Ae(t) + R(t)'AL(t) + u(t) 'Bu(t) J9t})  (29)
[

Since only the last two terms depend on u, (the first term is minimized

by the prediction process) it is only necessary to minimize

. T '
J () = lim “rl' (€ f[s:(:) 'AR(t) + u(t)'Bu(t) ot} (30)
T e300 .
(&)

where R(t) is generated by:  (27)

2(t) = FR(E) + Cu(t) + e u(t - 1) (27)
We note that (27) is of tgé same form as the "50 deiay" plant
equation (5)

&(t) = Fx(t) + Cu(t) + w(t) (5)
except that w(t) is replaced by eFTw(t - T). The opéimal control
solution is the:eforé of the same form as that generateé by (8) and (9).

u(t) = s(t)R(t]e) ’ (8)

s(t) = -B'lc'wct) €))
Note, however, that the value of the Performance Index is no longer .
the same. In fact, it is dependent on thertime delay and caﬁ be-’
showﬁ to betl} | -

T
t t
J(u*) = trace {A ] eFGQeF 0do} + trace {WeFTQeF "} (28)
° .
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I1I. The Noise-Time Delay Problem
<Consider now the sjstem described by (29) ané (30)
X(t - 1) = Fx(t - 1) + Cu(t - 1) + w(t - 7) - (29)
2(t) = Hx(t - 1) +.\{-(t e (30)
Let . Rt - 1) = E{x(t - ac)lz(c),"of_ t} (31)

be the least mean-squared estimate of x(t - 1) based on the observa-
tion of 2(0), 0 < t.
The solution to this problem is well-known!&] and is a slight ’
modification of the Kalman filter which includes the effect of a
deterministic controi u(t). Solving (32) for P(t), the error
covariance matrix
B(t) = FP(t) + P(OIR' - P(t) KR HP(x) + Q (32)
The solution fofvﬁ(t - 1) is given by |
é(t - %).=Fx(t - 1) + Cu(t - 1) + f(t - T)H'R’llz(t) - BE(t - 1))  (33)
2The implementat;on'is shown in Figure 5, where P is the éteady- .
state soluti5n qg (32). | N

To determine u(t), consider the quadratic cost functional (7)

modified to include the effect of the time delay

T .
J(@) = lim %'E{ ! [x'(t - ©)Ax(t - 1) + u'(t - 1)Bu(t - .7)}dt}  (34)
T ' '
% .

As before, letting x(t) = %(t) + e(t), (34) becomes

T .
J(u) = lim % { j [e'(t - T)Ae(t - 1) + R(t - 1) 'AR(t - 1)
T 4
+ u'(t - 1)Bu(t - 1)]dc) (35)

Once again, e(t) is indepéndent of u(t) and for all t, E{e'(t)Ae(t)}

(1}

{s at an absolute minimum and it can be shown that
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T -
E{ I e'(t - T)Ae(t - 1)dt} = trace(AP)
A E
Since (35) is evaluated in the limit as T goes to ® it may

116
Treo

=M

be expressed equivalently as,

T : . - N
1im ‘%‘ £{ I [£(2)'A%(t) + u(t)"Bu(r)]dt} (36)
T4 :

T .
Substituting (30) in (33) for é(t) . '
$(t - 1) = FR( - 1) 4+ Cult - ) + Tl - DER kG - T
+ v(t - 1) - EX(t - 1)] (37)
and that e(t) = x(t) - %(t) and using the.sceady state value of P(t)
$(t) = F&(t) + Cu(t) + PH'R M[He(t) + v(t)) (38)
[5]

Wonham has shown that the process | ‘
yn‘a’lme(t) + v(t)} i39)
is a white nolse process Qith covariance matrix a
QS( t - 0) = E[q(t)q(r)']
| - PH'R TIPS (¢ ~ o) " (40)
Therefore (38) can be wrigten . | ’
£(t) = FR(t) + Culr) + §(t) (41)
Recalling that the cost function to be minimized (36) bears the
same relationship to (41) as in the previous cases, the optimal
.control is once again the same as expressed by (8) and t9).
The value of the Performance Index in once again different,

(1}

however, and can be shown to be
T
4
J(u*) = trace {A f eFUQeF 40}
) ©

— - — ]
4+ trace {WePTbH'R 1HPeF T}

. T
Y -t

+ treace {A ! eFOpu g ipef Y45} (42)

! .
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In summary, the Kalman filter is used to generate, at time
t, %(t - 7). The linear predictor Operateé on X(t - 1) to generate
%(t). The optimal controller then operates on £{t) to generate

ut(t). The totel system is shown in Figore 6.
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APPENDIX

APPLICATION OF OPTIMAL CONTROL THEORY TO
JET ENGINE PROBLEM '

The resuits of the preceding section pfovide an optimai control
pelicy for the jet engine whose transfer function is shovn in block
diagram in Figure 1, "The plant transfer'functioﬁs Gl(s) and Gz(s)
are expressed in (1) and (2) below: |

1 .
G, (s) = 3 ¢9)

3 2(.5
s + s + 1
[2(100)]2 2%100

= BYPASS DOOR DYNAMICS

. ’ 8“50045 A (2)
02(5) 5= [Hg— . 1) { 82 . e 2 §‘31 N 1}
80 (365)2 365

. ® INLET DYNAMICS

To réduce computation time and compléxity it was decdded to
ignore, for the present, the bypass door dynzmics, Gl(s), and to
determine the optimal control of the plant represented by Gz(s)
#lone. Once the cont;ol for Gz(s) is known, it is then possible to
either utilize the poles of Gl(s) if they fall clese to the poles
in the desired feedback transfer function H(s), or cancel the poles
of Gl(s) if they occur at.unwanted locations.

Thus the plant to be-controlled is described by (2)} The
general form of the two factors of (2) is given by (3) and shown. -
4n slock disgram in Figure 2. Figure 3 substitutes the appropriate

numerical values as received from Lewis.,
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1 1

e (3)
5 5 828
o + 1 2 + ) +1

wn n - -

The block diagram showing the optimal contrpl of ;uch a p;ant
is given in Figure 6, page 14 of this report. Noée that the solution
requires the determination of W(t) as definé& in equation (10),
page 4 and P(t) as defined in equation (32); page 10. Both (15)
and (32) involve solution of integral type eéuations. The first
attempt to solve digitally for W(t) and P(t) a one step approximé—

tion was used

Wt + At) = W(t) + W(t)At )
- - and
S P(t + At) = P(t) + P(t)At (5)

Because of difficulties encountered in achieving convergence, a
five-point Runga-Kutta routine was implemsnted. Once again great
difficulty was experienced in obtaining convergence as well as
excessive computation time,
A decision was then made to solve the equivalent discrete
- time estimation and coptrol problems; The existence of a functional
relatfonship between the discrete-time soclutions and the continuous

time solutions suggested the practicality of this approachta].

Discrete Time Estimation

The solution to discrete time estimation is achieved by iterative
solutfons of (6), (7) and (8). These equations are given in

Heditchlé], page 174,

K(k+1) = Pkt R)H' (k1) [H Q)P (kb1 KD HY (kkd) + RG] (6)
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r(k+1}k) = $(k+l1, k)P(k}k)é(k+l k) + r(k+1 k)Q(k)F'(k+1 k). (M
POctl|ktl) = [T - K(k+l)H(k*l)]P(k+1[k) (8)
with P(0|0) = E{x(0)x' (0)}
The discrete model of éhe plant -and measurement processes is
described by

" x(k+1) = q»(iu,k)x(k) + T (kt1, k) w(k) )

20et1) = H(H1)x(K) + v(k+l)‘1.- , (10)
and Elw(Du’ (0] = QU8 an

A typical computational cycle proceeés as follo%s: B

1. Given P(k]k), Q(k), ¥k+1,k) and r(k+1,k§, P(k+i[k) is
computed using (7).

2, P(k+1]k), H{k+1l) and R(k+1) are then substituted into (6)
to obtain K(k+l).

3. P(k+ilk), K(k+1) and H(k+1l) are substituted intoA(S) to
obtain P(k+1]k+1).

4. The cycle is then fepeated.

It can be shown that

At+0 be
This fact was used by dividing by At the final value of P(t]t)
obtained by the iterative procéss.above and substituting that result
as initial conditions on P(t) in equation (32), page 10. Convergence
wvas then eesily obtained for P(t) in the continupus case. The
resulting P(t|t) for discrvete time solution using time increments
of 0.1 millisecond was within 2% of the continuous time solution

showvn in Table 1.
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. —

TABLE 1
Compaiison of Discrete Estimation with Continuous Estimation
@-= .05, R = .001)

Discrete Case (At = .D00Ll second) Steady State

1.36944E+02  9,89223E-02  -1.51184E-02
P(]t) = | 9.892238-02  1,02189E-03  1.37105E-04

~1.51184E-02 1.37105E-0% 3.91911E-05
-1.51184E+01

K(t+At) =  1,37105E-01

3.91911E~-02

Continuous Case -~ Steady State

P(t) = | 9.78381E+02 1.03177E¥0i‘ 1.39888E+00

~1.54231E+02 1,39888E+00 3.99813E-01

-1,54231E+05
K(t) =  1,39888E+03]

3.9981384—0};J
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Piscrete Time Control

A gimilar app:oécﬁ-was used for‘aalviné for ¥(t) in the optimal
control equation (10), page 4. I -
The digcrete time equations to be solyéd iterative1y>are'(9)
~&nd (10)
S(k) = ~(¥' (kr1, WY (k] k) + B()] Ix
[ Octl, KOW(kE1)O(kH1,k) ] (9)
W) = ' (k+1, KW (k130 (K41, ) ‘
1L KON QD) ¥ (1, DS (K) + ACK) o
The discrete model of the plant and measurement processes now include
the effect of control and are given by
x(ktl) = O(k+1,K)xu(k) + T{k+l,B)wlk) + ¥+, Kulk) (1)
T2(kt1) = HOHDx(kHL) + v(kel) an
The performance neasure Jy is quadratic of the form
N o .
3y = E{ 121 [x" (DA ={1) + v'@E-1)BUE-DuE-DuE-1)1}  Q3) -
Equations (9) and (10) are solved "backward” {in time. That is,
é?lution is obtained for S(N) » w(y) ~» S(N;l) + W(N~1) » S(ﬁ-é) cns
S(N) + W(l) + s(0). & typical solution curve for a one-state
problen is sho;n in Figure 4, It was observed.that -

lim W(t+At) At = W(t)
At=0

The steady state values of the elements of W(t+At)At were then
substituted in the optimal control equation (10) in continuous time.

Once again convergence was easily cbtained and results are tabulated

in Table 1,
In summary, the discrete time estimation and control problems

were solved to avoid convergence problems encountered in solving
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the continuous time case. Values obtained for W(t) and P(t) were
then substituted in the continuous time equations and solutions

obtained.
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Table 2

Comparison of Discrete Control and Continuous Control

-
F; 0 o©
A=]0 0 0 B = [1]
0 o 1
. o

Discrete Case (At= 0001 second) Steady State

l

2.14491E-05  5.10425E-03  2.60397E-02

dise ™ 5.10425E-03 2,08104E+00 8.77318E+00

2,60397E-02 8.77318E+00 5.55050E+01

disc = 1—2.84938E~04 ~6.72419E-02  ~3,44291E-01 '

Continwous Case — Steady State

-~y

2,14420E-09 - 5.10039E-07 2.60386E~06

W = |5.100398-07  2.08096E-04  8.773958-04
cont

2,60386E-06 8.77395E-04 5.50037E-03
-

S e -2 ,85178E-04 ~-6,78352E-02 -3.46312E-01
cont L §
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UNSTART PROBLEM

" R. T. Stefani

Introduction

The basic préblem is to select the feedback controller for the
system in Figﬁre 1 in such a way-that the following'objective function

is minimized

1)

in the above, ) is the expected number of unstarts per second, y
refers to the shock wave posit%on (xs) which is commanded to be zero,
and TOL is the tolerancé. This report di§cusses the computationvof
), the constraints on the‘feedback control, and the'resulting design
of a feedba;k controller. Two désigns are present;d: one where the
feedback consists of a gain term and ‘two real zeros and a second

design using a gain term, three real zeros, and one real pole.

Calculating )

In order to calculate-l (for the purpose of evaluéting the

effectiveness of any candidate feedback controller) cne must obtain

2 . 2
and p.
OY y

’ 2
evaluation of Gy . Hence, we wish to calculate

, the mean square error terms. Let us consider the
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i 'oyz = E{y%(0)} (2)

In order to calculate this variance, let us make use of the power

spectral density which is the Fourier transform of the autqcorreia—

s
tion of y(t + T) and y(t). '

"

Syy(uo fourier transform of [B{y(t+T)§(t)} = Ryy(r)]

(o 0]

-jm
f Ry, (e 1 o 3

Q0

1f Syy(uo is available, then cyz follows directly since

o
2 1
¢ t=r (0 = S (W)d; 4
Ry @ = g [ s s (%)
2

Suppose we redraw Figure 1 into the form shown in Figure 2, thus
‘using the superposition of the signals v and w for this linear
system to obtain the response of y for zero input. Employing convo-

lution integrals, one may obtain'syy(w) from Figure 2

Syy (9 = B G (-3u)S, () + Hy (G, (-3u)S_(w)
. )
+ B G,y () S () + B, (Ju)H, (35, (o)

For the current problem, v and w are uncorrelated white noises,
hence S (w) =S _(w) = 0 and S (w) and S _(w} are constants.
vw wv vv ww

-

Using this statistical knowledge, cyz can be evaluated from (4) and

(5) )
2 va‘ @® Sww ©
oy 7 T julcjw)nl(-jw)djw o jnzumazc-mdjw (6)
-0 -00

It icmediately follows from Figure 2 and (6) that .
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(e 0]

) s . . L
-2 v . . - - .
o; = 34 J[jwﬂl(ﬂw)]['w%( jw)]djw (7
o oo L e
o
sww A
v g J[Juﬁz(jmt-jwﬂz(jwndjw

-00
Letting s = jw, one can evalua;e (7 Sy determining Hl(s) and Hz(s)

' from Figures 1 and 2, knowiné G (s), (s); and H(s). One simply
substitutes the correct polynomial of s into the followlng where

the subscripts N and D refer to.numerator and denominator polynomials.

KK H, G
5

. n Cin Con
17 Wy G, G, + KRB G G,
‘ (8)
. By Cip San
2 By Gp Gop- + KK Hy Gy Son

Constraints on the Feedback Controller

The effectiveness of agy feedback controlle; selection is
determined by evaluating ) whi;h, in turn, requires evaluating gyz
and 0;2 using (6) and (7). 1In order to evaluate the required
integrals, it must be true from (6) that the numerators of Hl and
Bz are at least one oréer less than thé corresponding denominators.
It must similarly be true from (7) that the numerators of H, and H

-1 2

are at least 2 orders less than the corresponding denominators.

For both (6) and (7) to be calculable, the latter requirement must

hold. The order of the polynomials in (8) are



" 30

CL Polynomial Order
GlN 01’?“ .
CID 2
GZN 1 .
. 9
: S -3 9
%hy
OH

t

Hence H and H are, for the moment, of unknown order. If the order

of the numerator of Hi is at least 2 less than the denominator, then

from (8) and (9)

(o, +1) - (0 +5)]_<_-2

iy "p

That is, upon simplifying

0, -0 < 2 (10)

Similarly, if the order of the numerator of H, is at least 2 less

2

than the denominator, from (8) and (9) we have

[©. +3) - (. +5]< -2 (11)
Hy Hp -

which obv}ously holds for any order of HD. We conclude that any
candidate feedback controller can have a zero over poles excess of
no more than 2. Furthermore, the poles of (8) must all be in the

left half plane. Using root locus considerations we note that the
number of open loop poles is 5 + OH while the number of open loop
D .

zeros is 1 + O, . Hence, the pole over zeroc excess is 4 + (O -0 );

HD HN
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—

1f we wish to insure that the closed loop pqles>%re all in the left
half plane for any gain choice, we can do so by selecting the
maxinum zero over pole excess for the feedback controller thus pro-
viding a net open loop.pole over zero excess of 2. The result is
a 90° asymptote whose real crossing may Be kept in the left half

plane by properly choosing the feedback controller poles and zeros.

That is

~~ . . - . : .-

10’ S2p

0 > real axis crossing = %{fﬁ real parts of poles of G
- zero of Gon ¥ % zeros of HD - ¥ zeros of HN} (12)
Figure 3 contains the selected transfer functions for N and G,-

The result of using the transfer functions of Figure 3 with (12) is

the inequality
¥ zeros of HD -3 zeros of HN 5_717 rad./sec. (13)

From the above discussion

o, -0 =2 (1&)

Finally, to insure that no locus may result in a right half plane

pole

zeros of <0
" (15)

zeros of H“f_ 0

1N

In summary, {13)-(15) provide constraints on the feedback controller
such that the resulting system is stable and the transfer functions

Hl and H2 have numerators of order 2 less than the depominators all

of which are necessary such that the objéctive function A may be

calculated.
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Obtaining the Optimal Feedback Controller

In order to obtain the optimal feedback controller, two problems

must be considered. The first problem is calculating the objective

function X while the second problem is varying the feedback parameters

_ such that the optimal (minimum) value of A is achieved.

Calculating A is discussed in the las§~two sections. One musﬁ‘
solve (6) and (7) where Hl ana HZ are defined in (8). A.subroutine
INTSQ is used to evaluate integrals of the form

©

1= '2‘%:'5 }F(jw)r(-jmdjw 16y
~00

INTSQ is discussed in the appendix. 1If conditions (13)-(15) are
met, then F(jw) in (16) satisfies the :equirements of INTSQ.

The problem §£ varying the parameters to optimize A is solved
by using a subroutine designed for one function of two variables,
Since the problem at hand treats more than two variables, at each
step in the process all but two variables must be fixed thle the
remaining two are varied.‘ The subroutine'is Plk)T3D; so named
because a three dimensional plot is obtained, that is, a plot of
the function versus two independent variables. To utilize PLOT3D,1
100 values of each of the two variables are selected and thé objective
function is evaluated at all 10,000 combinations. The subroutine
quantizes the data into 26 levels of ascending magnitude. PLOT2D
then prints out a IOQ by 100 array of letters A-Z. The horizontal
and vertical axes represent the independent variables while the
letters represent the magnitude of the objective function. In
essence one has a contour plot of the funct on over the selected

parameter range. One can then select the optimal value if it is

L



“-interior to the plot or make a judgmeht fFom the contours as to-
what new parameter rénge is required to oBtaih'the optimal value.

In Figure 4 a general block diagram of the computer program is
shown. The érogram must be given values for all but two of the
feedback parameters. Then, 100 Qaiues are selected for each of the
other tgb_parameters. UNSTART 1is called'to evaluate } . -The sub-
ioutiqe UNSTART, in turn, calls INTSQ to evaluate (6) and N,
evalusates A from.(l),-and returns A to the main progra@. When a11>
10,000 values have been obtained, PLOT3D is called to furnish the
100 by 100 contour plot of the fﬁnction. ‘ .

Once the optimal feedback parameters are available, one can

determine the closed loop poles by using a root solving scheme.

Plan of Attack‘for,the UNSTART Problem

The follé&iﬁg Plan of attack was used for the unstart problem.

A feedback controller consisting of two zeros and a gain was selected

first.

- - "B(s) = K(s + a)(s + b) an

The parameter b was fixed while a and K were varied to obtain
;nhbptimal K. Then K was fixed at the resulting optimal and a and b

were varied to obtain optimal choices. Next a and b were fixed at

the resulting optimal values and a new optimal K was chosen. Finally,

the new optimal-K was used to obtain a new optimal a,b pair. Hence
two cycles of computation were made. The closed loop poles were then
obtained for the resulting values of X, a, and b.

A second feedback controller was considered

Hesy = K+ 2) (i i 3) (s + c) A(.isi

Ly
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The previously selected values of K, a, and b were used. Parameters
¢ and d were varied and an optimal pair was found. _Thg resulting
closed loop poles were obtained. In regard to (17) and (18) it is

necessary to satisfy (13)-(15) so that all integrals calculated by

subroutine INTSQ are valid and so that the ;esulting system is stable.

In terms of tﬁe'parameters a, b, ¢, and d, one must have, to satisfy

(13)-(15)

a, b, c,d>0

' : (19)
a'+b+c - d< 717 rad./sec.

Optimal Feedback Controller H(s) = K(s + a)(s + b)

The procedure discussed above was used to eval&ate optimal
values for K, &, and b. With b arbitrarily fixed at 23, a plot was
made of the contours of ) for variéus values of K and a as shoun
in Figure 5 for exponential variations of K and a. There are two
interesting points regarding Figure 5. Note first that the optimal
gain selection is constan; over a large range of a. As a result
K = K1-=8.é4 # 10-6 was selected. The second interesting point
regards the ridge. This ridge is, in effect, a stability contour.
On one side one calculates invalid values of A’Qﬁereés on the other
side (for a stable system) one has valid X values. If one ignored
tﬁe necessity of maintaining stabiiity, one might be tempted to
seek the invalid migimﬁm. Furthermore, the stabiliéy contour (valid
fo; various gain selections) is less restrictive of allowable values

of a than is the restriction imposed by (13)-(15) which requires’

s
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a, b>0 .
- , 20)
a +b <717 rad./sec.

This occurs since (20) is true for all gain values whereas Figure 5
treats specific gain values.

With K = 8.84-x 10" contours of A Qersys a and b were obtained
as in Figure 6. Note again the presence of a ridgé which is a
stability contour related to the above gain selection and which is

less restrictive than (20). The optimal pair a, b was

a=b = 235 rad./sec.

’

¥With a = b = 235 it was found that the optimal value of K was

6

-§~9}3x}‘10- . With K so chosen Figure 6 was repeated with no

change in the optimal pair a, b. Hence the optimal parameters are

K=28.9 x. 107

‘ - (21)
a=b= 235 rad./sec.

The optimal objective function and mean square errors were

") =.73.76 unstarts/sec.
2

o = 4.8is (in)? (22)

. yz = 2.092 x 10° (in.sec.')2

The closed loop poles were (see the root locus of Figure 7).,

-107
-239 + j223 (23)

-171 + §1001

Assuning that we have
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a normal distribution for y and y and ﬁsiﬁg a + 2y range Qe can saf
with 98070 certainty that the shoqk wave position is between iﬁ-4:
inches with a time rate of chamge between i2890 inches/seconﬁ.

This oscillation is probably due to the lightly daﬁped pole in (23).
It is not obvious that a tight bouﬁd on éhéck wave position at ;he_

expense of a2 high value of c}z is as detrimental as is implied by

A since X is directly proportionél to 09.

K(s + a) (s + b) (s + c)

Optimal Feedback Controller H(g) = )

The values of X, &, and b from (21) vere used. Parameters c
end d were varied and the contour plot of Figure 8 was obtained.
Once again the ridge separating stability regions is less selective

than a plot of (19) which, for a and b chosen above; requires

¢, d>0
c -~ d < 247 radf/sec.
The optimal choice of ¢ and d vere
c = 951 rad./sec. .
(25)

d = 1343 rad./sec.

The resulting optimal objective function and mean square errors are
A = 70.46 @nstarts/second)

- yz = 6.02 (in)2 (26)

o] ;2 = 1.59 x 106 (in./sec.)

The closed loop poles were (see the root locus of Figure 9)
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-101

-223 + 3245 S
: ' @27
-243 + 3937
-1238

Although ) was reduced somewhat from (22) by reducing Giz, it is
not clear that this design is better sincelﬁhe bound on cyz is now

looser.

Summary -

Optimal feedback controllers were obtained with the resulting
parameters, minima, and closed loop poles contained in (21)-{23)
~and (25)-(27). Some consideration should be given to the ectual
- importance of controlling y since y can be held to within reasonable
bounds. It may be of interest to design the feedback controllers
to minimize oyz as defined in (6) rather than ) which is defined in
(1) and is directly prop0ftiona1 to 09. It 18 concluded also that
contour plo;s of functions such as ) (and alsoc;y2 6f 092) contain
ridges which are, in effect, stability boundaries} hence care must

be takep as to the proper direction in which to search for minima.

e
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v (2x100)

Cip  s? + (21100) S + (25100)2

6 (s) =
('lb'/sec ./volt)

] (2x100)*
" (S + 314.2 + 3544.1) (S + 314.2 - 3544.1)

G 2.
2N (2.9) (80)3657) (s + 210)
Gy(s) = Cop = 210 x

(480) (s2 + (.6) (365) s + 3652)

2 _
_ €2.9) Sg) (365 ‘) x(s + 210)

‘s+80) (s+109.4 + 3 348.1) (s + 109.4 -~ 3348.1) (in/lb/sec.)

Figure 3 -~ Transfer Functions For The Unstart Problem
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.

fix 211 but

2 parameters

select values

for each parameter

repeat for

all .
ICoOx Ico \

combinations calculate 3 evaluate integrals

using subroutine using subroutine

UNSTART INTSQ

T g (:print parameter valuesj)

4

plot contours
of function }
using subroutine

PLOT3D

l STO?

Figure 4. Computer Program Flow Diagram

s
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1
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Figure 6, Contours of A Versus a and b for Fixed K
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Appendix

A closed form solution for -the integral

joo . Joo
1= 5o j;;%%l(-g = g [F@FCRER D

=Joo : R '
is presented in the paper by F. ﬁ. Effertz.1 The solution takes the
form of Equation 4 in his paper. 'A better algorithm for the éompu-
tation of Equation &4 in Effertz is presented in the cq;re;poﬁdence
by Pazdera2 (Equatioh:7'). A modified form of Pazdera's algorithm
has been coded in FORTRAN. |

The use of Equation 4 in Effertz can $e $est illustrated by an

example. Suppose we wish to evaluate the following

Joo _
.In.ilﬁ_ fz s ic St ds  (A2)
-joo s + (atb)s + ab s” - (atb)s + ab

.

It can be shown from residue thebry that the correct answer is

I = Residue of F(s)F(~s) at s = -z
S , (A3)
+ Residue of F(s)F(-s) at s = b

where F(s)F(-s) indicates the function to be integrated over s = juw.
Then the answer is

c2 + ab

I= b+

(A4)

-

To use Equation 4 from Effertz we must make the following associations,

using the complex frequency variable S in place of p

Lot



g(p)‘ﬂ (s + ¢)(c —';) = c2 - 52

then p=Ss

b, = c2
n(p) = s° + (a + b)s + ab (4%
then p=Ss

N=2

Po °
S VS il T S T Sl 6
22, al,o 2a0 a, &,
Po %2

Substituting the correct values of ayr 855 etc., and cancelling minus

signs for this problem.we obtain

c2 + ab

1= TG+ B

(A7)

7 .

What is most interesting is that the result depends only on th
coefficients of the known function being integrated and not on the
polgs of the function as one would suspect from residue theory.

. It has been mentioned that the algorithm from Pazdera (Equafién
7') has been programmed. Some changes in the nomenclature of

Equation 7' were necessary to facilitate coding. Note that the

'{47.

L
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practice in Effertz and Pazdera is to make the highest numbered
coefficient correspond to the lowest power of the variable p. Note,

also,(that subscripts such as a, are in evidence. To facilitate

0
coding, the lowest numbered coefficient was subscripted in the form
A(l) and this coefficient wasAassbciated'with the lowest power>of
the variable é, in this case po. In generai, :he,ith coefficient
A{1) is associated with the (i - l)st power of p, pl-l.' (In FORTRAN
the éxéression A(b) is not allowed). Note.ffom Eéuation Al-above

vhat must be done to operate on the function F(s)F(-s). If F(s) is

of the form

F(s) = f;% (A8)

then the algorithms suggested in both Effertz and Pazdera require

the use of

g(s) = c(s)c(-8)

. (A9)
h(s) = A(s) :

It is more éesirable to input C(S) and A(S) rather than c(s)c(-s)
and A(S). Consequently one uses the INTSQ subroutine by éoding the
coefficients of C(5) and A(S) with ascending subscrié:s correspond-
ing to ascending powers of S. The subroutine provides the'Operapion
C(S)C(—S). Furthermore, the subroutine checks to see if the lowest
coefficient of C(S) or A(S) is zero so that factors of § may be
either considered or cancelled. Two basic requirements must be met
by A(S) and C(S). First, the roots of A(S) and C(S) must at least
have 2 O real parts. (Hufwit; polynomial requirement). Secondly,

the highest power of C(S) must-be at least one less than the highest

ey
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i
/

¥

power of A(S) for convergence to be assured. If A(S) is Nth order,

one inputs the N+l coefficients of A(S) and the N coefficients of
c(s).

The use of this subroutine INTSQ may be best illustrated'by an

‘example. Suppose we desired to evaluate the integral

Joo
1= J' =3 4 5 4 == ds (A10)
- jos 48 4+ 3sT + 25 + 1 45" 4+ 35 -2s + 1 :

The polynomials C(S) and A(S) as defined in Equation A8 are input

in the program as

c(1) = 4. AQl) = 1.
c(2) = 1. A(2) = 2.
(Al11)
C(3) =0 A(3) = 3.
A(L) = 4.

. The program then utilizes the modified Pazdera algorithm and prints

out the message
. THE VALUE OF THE INTEGRAL IS 12.250

To check this enswer, one can use Effertz Equation 4 for a third

order case (n = 3).
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b0 b1 b2
ao 82 0
4 |0
1= LD °1 %3 -
280 a1 a3.9 ,
ao az O
-l - (Al12)
0 82 83 .
oA bo 8, 83+ Dy 85 a; - 3, 85 b,
2a . - 2
0 8) 83 83 " 39 23
For our example problem, the following associations follow
boaO aoal;
b, = -1 a, = 3
1 1 (A13)
b2 = 16 a2 = 2 .
a3 s ]

Substituting the values of

thé computers solution I =

U -

Equation Al3 into Equation Al2 verifies

12.25.

N).



References

1.

F. H. Effertz. "On Two Coupled Matrix Algorithms for the
Evaluation of RMS Error Criterion of Linear Systems,”
Proceedings of the IEEE, June 1966, pp. 879-880.

J. S. Pazdera. Correspondence, Proceedings of the IEEE,

-November -1966, pp. 1628-1629.

51



52

UNBIASED STRUCTURAL PARAMETER ESTIMATION

R. T. Stefani

Goal of This Study and Plan of Attack

The goal of this study is to utilize a weighted least squares
objective function and formulate an estimation algorithm which is
unbiased when applied to structural parameier estimation (i.e., the
estimation of parameters using quantities whiéh are obssrved with
uncertainty while a relationship exists between the unébservables).‘
In this case conventional weighted least squares techniques lead to
biased estimates. The estimation algorithm should be applicable
even vhen noise statistics are unknown, requiring some method of
estimating the statistics. |

- The following plan of attack is suggested. A search will be
made of related literature. The theory of‘stochastic processes and
random variables will bg aéplied to analyzing the convergence
properties aAd mean square error for candidate algorithms. Linea;— 
system theory will be used to simulate (digitally) a linear system'.
on which to compare the estimation algorithms. Conventional tech-
niques will also be cénsidered (e.g., conventional weighted least
squares methods and the instrumental variable approach). Additional
applications of the new technique will be sought, hopeful;y in

fields which have not previoﬁsly been considered.

—



Structural Parameter Estimation

Structural parameter estimation is best introduced by means of
& simple example. Suppose there exists an exact linear relationship

between quantities Ye and xe, that is, in matrix form

Ye = _xe h (1)

Suppose we have measurements Ys and xs of Ye and Xe respectivély;

FPurther, suppose we wish to estimate h such that we also ninimize
= -X h)T - 5
J (Y8 s M (Ys Xs h) (2)

Hiﬁimizing J is a weighted least séuarés minimization ﬁroblem. By

-~

selecting h such that 3% « 0, we have, assuming that M is symmetrical
" dh
~ T -1, T _
ha (X,"MX) “ X MY &)
. Let us assume that
Ys = Ye +Vs= ke h+v | _FQ)

whgre V is a.noise term with.zero meén and a covariance matrix R.
The above problem may be considéred é'conventional weighted-lgast
squares problem if X; = Xe' In that case, the expectea valﬁe of ﬁ
is h as can be seen by substiCuting {4) into (3) and taking the
expected value with Xs = Xe, |
Howeber, a more general and more practical problem arises when

Xe is known with uncertainty.

X, = X +N .. (5)

vbere_N is a noise term with zero mean aind a covariance matrix S.

¢
PR WY
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Tﬁe problem becomezs one oé structural'pérameter estimation1 in that
a structural relationship exists between the unobservables Y0 and'ke
both of which are known with uncertainty. For the structural parameter
estimation case, the expected value of ﬁ becomes

E(b) = (XeT MX + T)°1 XeT y X, b I

- (6)
‘1= BN M) ’

Thus, a biased estimate occurs due to the presence of T.

" Previous Approach to Bias Removal

An approach to removing the bias in (6) was discussed in the
Harch 1970 progress repbrt. This technique consists of changing the
estimation algorithm'of (3) by subtracting T (defined in (6)) as

follows

~ T 1.7
he [X"MX -T] X5 MY, (7

Upon taking th; expected vglue of g’in (7) Lsing’(4).and (5) one finds
- that one has an unbiased estimate of h. However, the problem
immediately arises as to-ghe selection of M (assuming one is free to
choose M) . Furthermore, (7) does not minimize J as required by (3).
The problem of selecting M to minimize the variance of the
estimation error was discussed in the March 1970 progress report.
Recent work has indicgted that further efforts to that end will be
frui;less. The existence of a best linear unbiased estimate for h

-

requires, as per the Gauss-}iarkovtheorem,2 that

ECr,) = %, b ®

L



In the case at hand
) .
E( s) .:e b (%)

This fact again points out that a structural relationship exists
between the unobservables (structural paraméte: estimation) rather
than between ehé observables (conventional weighted least squares.
parameter estimation).

The conclusion to be rgacﬁed is that(é) péovides a basis of comparisog
Qith other algorithms but additibhai techniques need to be considered
;o eliminate the shortcomings of this "subtraction" method. Specifi~
cally, one needs ﬁo select M and also to minim;ze some weighted

least squares function.

The Instrumental Variable Approach

The literature contains a method for bias removal &pplied to
structural parameter estimation, nameiy, the instrumental variab1e1’3'4
- (1IV) methéd. In the IV method, an4addit;onél measurement
is uséd as an "instrumeﬁt" for achieving an unbiased result.‘ flo.
knowledge of the noise statistics is assumed.- The instrﬁmenéél
variable should be highly correlated with Xe but not with either

noise terms (N or V). The algorithm of (3) becomes (using Z as the

instrumental variable)

R @ N xs)'1 2T u ¥, (10)

The expected value of h is h, assuming Z to be correlated with Xe .
but not with N or V. In summary, one has adjusted the algorithm

to obtain an unbiased estimate. The variance of the estimation error

folliows easily -

L
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P=iE{(h - h)(h -k}
- - (11)
=@ ux) e nru @ ux)™
. . 4
Since one can hopefully make Z highly correlated with Xe s then

selecting M = R"1 results in

P = (xeT wx) ™t a2

e

whichris quite similar to conventional weighted least squares. One
has selected M, but still one must force z>t6 approach Xe and one

has not necessarily minimized J from (2).

New Approach

let us consider a new approach to achieving unbiased structural
parameter estimates. This approach follows directly from a weighted
least squares minimization problem and the weight selection is well

defined. Note that (1) can be written in two ways,

Y, =X b (132)

Ye .:A_HXe (13b) '.

In (132), h is an n x 1 column vector and Xe is an m x n.matfix {m
could equal 1, in which case Xe would be a row vector). Im (13b),
211 the different measurements contained in Xe are reformed into a
k x 1 column vector Xe with k < mn. H is therefore an m x k matrix
whose elements are formed from the n x 1 matrix h. Both (13a) and
(13b) axe equivalent. 1In view éf (13a) and (13b) let us writg the

sensor equation (8) in two ways.. . "

X =X, +N (142)

xs - xs +‘n (lﬁb) -
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‘Consider the objeéti§e function

s AT A _ RS : h; a7 . - A A
J=n M n+ [y, -, Ny h] »12[‘15 (X, N)b] o
. - (15)
+ [Y_ nx +Hn] M[Y -Hx +Rn]
e ~_.~Q’ ——— e o ,-\ ‘
- ) SRS raln AR '
. At this point, if one were to obtaln =< and —x ore. vould obtain
A BhA 3!1

non-llnear equatlons since N depends on n and R depends on h. Let us
-

linearize the partial derivatzves by con51dering N and H in (15) to be
A A

constants determlned from the last estimates of n and h.» Solv1ng ‘the

partial derivatives, the (n + 1) estimate i —

”~

‘T _ LT “ gl T _ oT I
hn+ [(X - N“ )MZ(XS Nn)] (X - Nn )MZYS, o (168)
T S ; A ; ::;ifﬁ";: A‘ - P T : 4-;'.»_:‘ o ' -
M2 Ys] ,(16b)

(“1 * “n+ S I My B % 7 Bon

i i - E .

fhe algorithm of (lé) is, therefééé,’iterative and begins with an initial
_ estimate of N. This initial estimate could be zero, hence the process

begins with iL = 0. As moF; data becomes available, the process can

also be sequential. 1In fact, the'matticesbof (16) cén easily be

defined to'éoﬁtain>$ubmatricgs thereby coﬁsideriﬁé the case where k sets

of data have been t;keﬁ. For the repeated data éaée, algorithms such

as (3) and (16) can be written a% summations over k in terms of the

corresponding submatrices contained in X3 Ys’ etc.

It can be shown the g is an unbiased estimate of h if the

ntl

weighting matrices are chosen as follows.

: an
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where S. is the covariance matrix for N and R is the covariance matrix

1
for V. Note that complete knowledge of Xe implies that Sl =+ 0. 1In this

~ T~ .
case M, * @ and n + 0 in (16b). Hence N approaches zero and the‘

1 o+l
algorithm of (16a) becomes (3), the algorithm for conventional 1eas§
squares estimation. On the other haﬁd, complete ignorance of Xé
imples that S, » =. In this case M, > 0.and (16b).can be written
D" XB - (matrix) x Ys- | a7

Substituting (17) into (16a), we fiﬁd }hét §n+l is found by coﬁpletely
ignoring the sensed<?a1ues Xs' ihg gehaviof at these two extfemés
is quite reasonable.

In summary, the algorithm ofiiié) follows direcbly from a weighted
least sfuares minimiﬁétion problem, ihé weight selection is defined,_
and the estimator provides aniasedfoperation in dealing with
structural parameter estimation., This scheme may be referred to a
linearized iterative weighted least §guafes technique (abbreviated

LITWELS). This ﬁechnique‘and the mnemonic are the work of the author.

General Problem to be Treated

The problem introduced in this report concerns estimation of a
constant parameter. A more general problem may be solved in quite
the same manner. In the general problem, the parameters méy be time

varying of the form

h = ¢h_+ TV (18)

Y =Xh .t
e e -



where W is a noise of zero mean Qith covariance Q. When Xe is
known gxactly, then one obtains a discrete Kalman }ilter fro& a
properly chosen weighed least squares minimization problem. When
Xe is known;with uncerta}nty, then Fhe discrete Kalman filter
yields a biased solution, but the instrumepéél variable apprbach4
or the LITWELS approach can easlly be extended to yield an unbiased
_ solution, A |
Since the weighting matrices ares chosen as the inverseé of
certain covariance matrices, methods must be chosen to estimate
the covariance matrices when the noisg statistics are unknown.
Estimates of this type follow from proper manipulatibn of the
objective function; Both the extension of the LITWELS technidue to
the time varying parameters case and'the estimation of unknown noise

statistics are future goals of this study.

-

pes
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ON fHE SEQUENTIAL SEARCH FOR THE MAXIMUM OF AN UNKNOWN FUNCTION

- by S. Yakowitz

I. INTRODUCTION

Many proglems arising in engineering and operations research
contexts have the following structure: The decision maker is pro-
vided with a class F of functions, whose comﬁon domain, X is
specified. _Some mechanism selects a function f from F. The decision
raker is not informed of this choice. He would like somehow to find
a point x* € ¥ at wﬁich f assumes its maximum value (denoted by
I1£11). Toward this end, the decision maker may sequentially and

without constraint-select elements X;, X,, ... from X. vupon

2)
choosing X he is informed of the value f(xn). Thus the decision
maker may come to learn certain features of f. Any (perhaps ran-

domized) strategy for choosing x on the basis of the sequence of

3) } will be termed a search procedufe. The problem

pairs {(xj,_f(xj
of finding a search procedure S under which, for all féf; {f(xn)}
converges to |lfll, in some specified sense, has generated‘a lively
body of research papers, some of which will be referénced and
described in the présent paper.

- As an example of the sort of engineering question giving rise
to a'search problem, suppose that an airplane is to fly withna
fixed velocity. 1Its fuel efficiency will then be a function of

the carburation setting. If x is the relative mixture of fuel aéd

air, and f(x) the associated fuel consumption required to maintain
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-+ the aircraft's velocity, then the framework for a seafch problem is
present. For this problem, X may be taken to be qhé unit interval
and F, perhaps, méy be considered to be the set of continuous
funct&ons on the unit interval.
" Under ;ertain restrictions on F and X, effective search pro-
. cedures have ﬁeen revealed. The most publicized of these is the

"gradient method" which, in its simplest form, determines xj+1 from

x, by estimating the gradient VI of f at x (by difference approxi-

3 3

mations derived from local samples) and then setting xj+l = xj +

AVE(x ). X is chosen from heuristic considerations and may vary as

J

the process evolves. 1f the functions of F are concave or at least
_ unimodal and X is bounded and sufficiently regular, the gradient

method will provide a Cauchy sequence {f(x,)} converging to Hell,

3

Hadley's book Nonlinear and Dynamic Programming [1] devotes a

nicely written chapter to the gradient method and its variations.
The review paper by Spang [2] has an extensive bibliograpﬁ§ on the
gradient method, more recént mecﬁods of vhich are described in.the
book by Osb;':,rn and Kowilak [3].

J. Kiefer [4,5] has éublished interesting analyses for Fhe
case that X is a bounded interval in the reél line. AIn particular,
undexr the search prdcedure he proposes, in n trials (the number n
mﬁst be specified in advance) the point x* at which £(x*y = gl
can be located within a distance of lan, L being the nth Fibonacci
number, when F is the set of unimodal functions on 0,1 . Further,
the search procedure is minimax in the sense that no non-randomiieé
strategies can improve on this operating point error Uniformly_inr

P. Bellman and Dreyfus [6] devote a chapter to this optimization



épproach. To this writer's knowleage,ian analogous search which
also possesses the minimax propercf has yet to be revealed for
wulti-dimensional X. -

An intriguing search model kwhich is-slightly closer ;o the
path to be followed here in that probabilistié ideas are prominent
and.multi-modél fpnctions are included in F) was pfoposed-by
~H. Kushner {7,8] who supposed £ to be a saméle function from a
Brownign'motion process on a bounded linear interval, X. An advan~
tage to this viewpoint is that, in addition to including multi-
modal functions, ideas from Wiener prediction theory can be brought
to bear on the problem of designing an optimal search procedure. -
Kushner points out that numerical evaluation of the optimal pro-
cedure is computationally prohibitive, but provides a search
procedure under which %ig 1/n ié? f(xi) = ||f]]|, almost surely.

The research reported in this paper follows an approach sketched
by S§. Brooks [§i. Presumably, Braoks took X to be a finite set,
and the loss associated uiih the function feF and operating point

xeX to be

L(x,f) = "proportion" of points x'eX such that

£(x") > £(x).

Then, given any positive nunbers ¢, d, a smallest number N is readily.
calculated such that if X3, %y +re X are selected from X by a
randomization which gives equal weight to each element of X, for

any real-valued function f,

Plmax; . o Llx;,0)>¢c] < d;. for n > N.



| Brbcké, as well as kushner, consiéer ‘the possibility-that the
measurements {f(xi)} may be corrupted by additive noise. Ihésé‘
considerations will be detailed, along with a brief review of
“stochastic approximation" in a later section (Section 4) of this
_paper.

Let us s;mmarize the results of this paper. F will, in all

our studies, at least include the set of continuous functions on X,

which, for expository reasons, will be the unit interval. Generally,
capital letters denote random variables and lower case letters an .
observation of the variable designatgd by the capitalizatiom.
Section 2 reveals two random search procedures; the first of these
achieves a?most sure convergence of 1l/n igl f(xi) to |ifll for-gachv
fecP, and the second fields a random sequence {f(xi)}'whicﬁ cohverges
in probability to |[f]]. Section 2 concludes with a theorem on the
non—existence of a search procedure under which f(Xn) + J1£1]
almost surely for all continuous £, and a theorem on the impossibilit&
of bounding the rate of cénvergenée in probability.

Sectién 3 reopens and extends the research pag@ suggested by
Brooks [9]. Where Brooks defines the loss associated with feP?
and operating point xeX by "proportion'" of x'ex such that £(x")>f(x),

we define the loss to be
L(x,f) = Lebesgue measure x': {f(x") > £(x)}.

It will be verififed that this retains the important feature in
Brooks' study that, for any positive numbers ¢ and d, one may
compute in advance of making measurements, how many measurements N

are required so that, for any fefF n 3N,
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HL(X,, £ > €] < d, ‘1(1.1)“

n* being the randoﬁ'elementﬂi, 1<i < n, which maximizes';hea

TR

measurement f(xi)' Further, raﬁdbm searches Sl‘and,s2 and numbers

N, and N, are described such that, for any feF, under 512
;'« n : 1 s
2[5upn>N 1/n Z L(Xi,_f) >cl] <d - ‘1,2)
1 i=1 .
and under S, o o - |
PLL(Xn, £) »¢c} <¢d for 211 n >.N2. (1.3

At the close 6E-Section 2, we show that under.cergain mild
restrictions, with increasing n the random variaple n L(Xn*’ fﬁ;iif
converges weakly to the exponential variable with parameter 1. 1In
this statement, n* has the same meaning as given in connection wiiﬁ
equation (1;;){"";

‘Seqtipn-Bjsgédies the éa;é that the measurements {f(xi)} are
Aco}rupted by indepéndent,‘identically distributed additive noise,
wvhich is assumed not to depend on f. With no further assumptions
on the noise process, we reveal a search procedure under which ‘\\~
the average operating loss, 1/n izl L(X ;£), converges in probabillty
to 0 for every Lebesgue-measureable function £; in the noisy case,
however, no lower bounds for the rate of this convergence have been
discovered. 1If the noise distribution is known, the previously
mentionedAconvergence is ogtainable even if the noise distribution
aepehds on the operationg point x. We compare this noisy-measuremént’
problem and the results obtained to the class of problems which are-
known to yield to the method of stochastic approximation; also

related results due to Xushagr are menttioned.
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The concluding section suggests how the preceding theory can
. :

be extended to unbounded and multi-dimension X and mentions a few

’implications of these studies.

11. ON THE EXISTENCE OF CONVERGENT SEARCHES -

To recapitulate certain remarks made iﬁ the previous section,
the situation with respect to 6onvergence (or equi#alén;ly, almost
certain convergence) of {f(xi)} to Ilfll.ié that this problem has
been solved only in certain,weak seﬁses. Gradient techniques as
well as Fibonacci searches require at least that f be unimodal.

The only other principal result that this author has uncovered in
the literature is that if f is a sample function of a given Wiener
process on X, then there is a search procedu;e éﬁhieviAg coﬁ#erggncé.
almost surely of igl f(xi)/n.to f!fll.»V(For brevity, let us refer
to this analysis [6] as "Kushner tﬁeory"). The weakness of the
situation cited above are érevious. First, the dbailéble models,ﬂ-
are too restrictive: Many classes oé important criterion functions
are excluded, or (as in the Kushner theory case) a structure is .
imposed that will not serve as a natural model for many "real-
world" phenomena. Secﬁnd, engineers and other practitioners of
control tﬁeory are, or should be, desirous of having some means of
computing how many observations are required ﬁo achieve a certain
performance levgl. Such a.statement would go something like:

“Given any §, € > O, under.search procedure S, a number N(ﬁ, €) may
.be computed such that P(G(llfll - fSXn)) >¢] <6 for all n > N(Q;FES’
feF.h G(+) would be some monotoniclfunction of |I£l] - f(Xn) such

2
as [(f(xn) - HEID/HEID Y . No such results, except in extremely .
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exclusive settings, have'been revealed and generally sPéaking{
there is no way for the engineer to estimatg in advance tﬁe quaiity
of performance obtainable in a finite number of observations.

This author has the opinion that for applications (i.e. when
only finitely many observations-can be_ﬁade), convergence-in
proﬁabil;&y i; fully as valuable as convergence alﬁbst surely, and *
both convergences are éésentially worthless unless éssocia:ed bounds
can be derived. However, if the reader is willing to attach value
to convergence unaccompanied by bounﬁs, then the following theorems
may be of interest in that they describe search procedures simul-
taneously as effective (in terms of convergence achievable 1f- the
distinction between convergence in probability gn& almost surely
is ignored) as gfadienc methods, Fiﬁonacci search, or searches in

Kushner theoty, but which are valid under a»muéh more general setting.

Theorem 1: Llet F be the set of bounded, piecewise-continuous

functions on [0, 1]. One may compute a séarch .procedure S

1 undef

which, for every €>0

lim PLE(X ) < [|£]] - €]=0

ne

iﬂ: SVEeLy :gz.

Theorem 2: Under the conditions of Theorem 1, one may compute a

search procedure 52 under which

o i
lim (1/n I £(x) = [I£]] e
naw i=]. )

almost surely for every fep.
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Theorems 1 and 2 are trivial consequences of Theorems 5 and 6,

in the proofs of which are described search procedures 5, and SZ;
Theoreticians might appreciate our observing that under a

class as large as F above, in Theorem 1 weak convergence cannot be

strengthened to strong convergence, as we now demonstrate.

Theorem 3: 1f F is the space of continuous functions on lo, 13,

there is no search procedure under which f(Xn) + |1£]ll almost surely

for all feP.

PROOF: Let £ be any continuous function taking its maximizing value
lIf]] at some unique point x* interior to (0,1, and suppose § is

" some se#rch procedure under which f(xn) + [|€]] almost surely. Let-
a be any positive number less than 1/2. Define An to be the evenf
that x* - a < X, < x*+ a for all i > n. Notice that A is an
increasing sequence, and as - x* is a unique maximizing point of é,
éig’P[An] = 1. Thus for some integer N, g(AN] > 0 and as there are
infinitely many disjoint Aon—degenerate intervals in X but outside
the intervai [x* - a2, x% + a], there must be some interval I such
that the event "I is not sampled at all"™ has positive probability
under the process determined by S on £. B will denote this event.
Let f' be a function identical to £ on I° and assuming a maximu§
11€'1] > 11fll. (The maximizing point or points must be interior
to I.) Recall that search procedures are constrained to depend on
the function being searched only through values actually-sampled.

Consequently, S on £, given B and S on £' given B are the same

process. As f(xi) -+ [I£]] almost surely, and B has.positive
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probability then, given B, £'(x,) » [[£]] < [[£']]-

C—

Onc concludes that under §, P[f'(xi) + JI1f'}13 <l - P[B] < 1.

As we have mentioned, for application of an optihizatiou
procedure, it seems to us highly desireable that, within the mathe-
“matical framework of the procedure, there be some way of assessing

uha; can be done in a fin;te number oﬁ jterations. The theorem to

" follow suggests that such estimates will not be available under the

loss criterion "flfll - f(xn)".

Tﬂeorem 4: 1f F is the space of continuous functiens on [0,13, no

search procedure exists such that for every c¢,d > 0, there is an

integer N(c,d) for which, if i > N{(c,d),

PLCIIEL] - £XO)/1IEN > ] <d

for every felF.

PROOF: Let S bé any search procedgre, ¢ and d any positive numbers
less than 1, f any function in F, and N any positive integer. Défine
1 to bé some interval in [0,1] such that, under the random sequence
‘indchd by S on £, the event (call it B) "I is sampled by time N"

has prob?biyity less than d. f!' is any function in F which agrees

vith £ on 1% an has a maximum which satisfies the inequality
GLET - THEID/LLE' > e

Then, given B, f'(xi) < ||f]| for 1 ¢ i ¢ N, and consequently, for.

~ the érocess induced by S on f!
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PLIEN] - £1G)/1E ] > ) 2R(B1>d  fornsN. (2.1

&s N and S are arbitrarily chosen, (2.1) implies the theorem.

The preceding development gi;es amplé e#idence for the.asseftion
-ghat 1f one wishes a search procedure having convergence bounds uni-
form on the sei of continuous functions, it is mnecessary to consider
a loss criterion different from monotonic functions of ||fl| - f(xn).
The next section suggéats such an al:ernaéive for which uniform bounds

are revealed.

III. PROPERTIES OF THE MEASURE OF THE DOMAIN OF IMPROVEMENT -

We seek to overcome what we regard as the greatest weakness in‘-
the existing theory of search procedures (which was described in
the previous section), namely, in the class F of continuous funﬁtions
on [0,1], under no search ptqcedure.can bounds on the rate of con-
vergence of f(xi) to llfll,-or on the rate of convergence of
i/n igl f(#i) to |I£]1] be'establishéd which are uniform on F. Tﬁe
practical consequence of this weakness is that the experimenter
cannot estimate the level of performance obtainable in a fiﬁifé
- pumber of search iterations. Our approach to overcoming these dif-
ficulties is to redefine the search problem g; proposing a different
(but, hopefully not unreasonable) criterion ;f goodness, _

Associated with each operating point xeF and criterion function

feP is the set A(x,f) = {y:f(y) > £(x)}, which is here called the

domnin of improvement (of f over £(x)). We propose, as a loss
function for search problems, the Lebesgue measure, m(A(x,f)), of
A(x,f). Thus L(x,f) = m(A(x,f)) = u[f > £(x)]. Note that for every

continuous function £, the loss function L(x,f) imposes the same



partial ordering on X as'does || f]| - £(x) (i.e. L(x,f) < L(y;f)_if
‘and only if, llfil - £(x) < || £]} - £(y)). Obviously, then,
L(xn,f) + 0 and llfil -,f(xn) + 0 are equivalent statements. Thus,
in an important sense, the classical loss function and the me;sure
of the domain of convergence are equivalent.

We remind the reader that in Section 1, with respect to 2 fixed

n

function £, for a sequence {xi} 1 we defined n* to be any subscript

i=

m(l £ m € n) such that
f(xm) s max f(xi): 1<i<n,

The strength of the results on search procedures, under the loss
"L(x,£) sgeh’ffom the fact that if X = [0,1] end {X;}i:l is a
sequence of independent random variables uniformly distributed om
X then L(Xn*,f):has a distriguti;n yhich is essentially independéné

of feF(or, more accufately,_has a "worst case" in F).

Theorem 5: Let F be the set of Lebesgus-measureable functions on

f0,1). For any integer n and number a in the open unit interval;
PIL(X +,f) 2 2] & (1-a)"

for every feP.

PROOF: Let t' = inf{t:m[f > t] 2 a}. As mlf > t] is continuous
from above, m[f > t'] > a. Also, since Lebesgue measure and the

uniform probability coincide on Borel subsets of X,

g

1'-azmffst')=PE(X)st']=PLEK,D 2a,151%n. '

;y order that f(xn*) s t', we must héve-that f(Xi) <£t',1<isgn.
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Iheréfore,

ﬁ : _ n
3 P[f(xi) <t']s (1-a) .
im]

r[x.(xn*,f) >a) = PLE(X)) s t'; 1 <igny=
If'm[ £f>t]is continuous,‘then for each a in the unit interval
_there is a t' such that m[f » t'] = &, and thus the bound described

in Theorem 5 cannot be improved upon. For example, if £(x) = x,

_ (xeX), then
PIL(X 4s) > 2l = a-a". o (3.1)

In what follows, Mn will denote the random variable L(Xn*,f) deter-
mined by equation (3.1). That is, Mn is the random variable having
the_cumulative distribution function En(x) = ] - (lrx)n, (0O gsxgl).
For several numbe?s A and D, Téble I gives the maximum number of
observations N requires so that P[MN > A] <« D. Also in this section,

P will denoée the set of Lebesgue-measureable functions on [0,1](= X ).

-




A .05 .10 A5 .20 .25 30 . .35 W40 .45 .50
D . . S : |
.05 59 29 19 14 11 9 7 6 6 5
.10 45 221 15 11 9 7 6 5 4 4
.15 37 19 12 9 7 6 5 & 4 3
.20 32 16 10 8 6 5 4 4 3 3
.25 28 14 9 7 5 4 & 3 3 2
.30 24 12 8 6 5 & . 3 3 3 2
.35 21 10 7 5 4 3 3 3 2 2
.40 18 9 6 5 4 3 3 2 2 2
.45 16 8 5 4 3 3 2 2 2 2
5 4 3 2 2 2 2 2

50 14 7

R

A .005 .010 .015 .020 .025 .030 .035 .040 .045 .050

.005 1058 528 351 263 210 174 149 130 116 104

.010 919 459 . 305 228 182 152 130 113 101 90
.015 838 418 278 208 166 138 118 103 92 82
.020 781 390 259 194 156 - 129 110 96 85 77
.025 736 368 245 183 146 122 104 91 81 72

030 700 349 233 174 139 116 99 86 77 69
.035 669 334 222 166 133 111 95 83 73 66

040 643 321 213 160 128 106 91 79 70 63

045 619 309 206 154 123 102 8 76 68 61

050 .~ 598 299 199 149 119 99 8 74 66 59
TABLE I

MINIMUM N SUCH THAT PC M, > Al< D



Let us proceed to our goal of révealing search procedures aéhieving

bounded convergence to optimal performance.

Theorem 6: One maj compute a search proceduré S1 under which, for

any positive numbers ¢ and d, a number N(c,d) may be found for which

. n
PLsup . ln 2z L(X,f) >e]<d SR
n>N(c,d) i=l . S |

- for every feP.

-
-

. @«
- PROOF: Let {n(i)}i‘l be a sequence of numbers such that n(l) = 1..
= .
and i/n(i) converges to 0 monotonically (e.g. {zi-l}). By theorem
5, we may compute a number N' such that
PD%'>cﬁ]<d.

Also, we may find a number N" greater than N' such that

(/) (ngy = W) /g, 1+ 1y, + K" /ng,] <c.

Search procedure.S1 requifes that X be sampled independently and

uniformly at times t = n (3=1,2, ...), and for t ¢ n

J J

chosen to be the best value in the sequence {xn(j)} sampled thus

> %, is

!

{8 monotonically increasing in t. Observe that from the choice of

far: f(xc) = max {f(Xv): v g t}. Thus é&idently f(xt), té{n

N' and the definition of S,

PL(X £) > c/2] < d.

n(N')’

1
on f) that L(xn(N,)f) s cf2. 1fQ occurs, then by the choice of N"

Let Q-be the event (with reference to the process determined by S

(and observation that L(x,f) s 1, always)

-

7%



n
sup Z 1/a L(Xi,f) < c.
n>K" i=l
In summary,
n ' 3
P[sup Un Z [L(X;,0) >c]s PQ]<d,
> N" i=l !

and consequentiy the theorem is proved, with the understanding that

- N" suffices for N(c,d).

" Theorem 7: One may compute a search procedure Sé; under which, for

any positive numbers ¢ and d, a number N(c,d) may be found for which
Pr..L(xn,f) >cled

for all n > N(c,d) and all fep.

PROBF: Let {a(j)} be a sparse sequence as in the proof of Theorem
6. From this we construct a random sequence {N(j)} where N(j) has
the sample space {n(j), n(j) + 1, n(j) + 2, ocoy-n(j+l) - 1} and

is chosen by the randomization whicﬁ-assigns equal probability to |

each element of this sample space. S, is the search procedure which

2
samples X i;dependently and uniformly at times in {ﬁ(j)}. At other
times, X, is chosen to be the best operating point thus far
sampled. The condition imposed on {n(j)} that j/n(ji converge
monotonically to O as j tends to infinity ensures us that a number
"K' can be found such that PIN()) = n‘]' < d/2 for all j > N', all~

integers n. From Theorem 5, a number N" may be found such that

PRI, > €l <d/2. 1I1f k = {max N',N"} then for n > n(k)

PIL(X ,£) > c] s PIM, > ]+ Plne{N(§)}] < d.

75°
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Now let us turn our attention to the question of how fast Mn
converges, as n increases. In the spirit of the central limig
problem, we seek a sequence {g(n)} suﬁh that g(n)Mn converges to a
limiting fandom variable other than :ﬁe unitary variable, and we
vish to find also what this limiting variable is. If we are able
to resolve this problem, then, heuristically speaking, 1/g(n) yill

__be thé convergence rate of Hn' In answer to these questions, we |
will find that Mn converges to the exponential v;riable at the rate
of 1/n. Also, we will be able to bound the error inducea by replacing
the cumula;ive &istr;bugion function Fn(x/n) of nMn by its limit

X

distribution, 1 - e = F(x).

Theorem 8: {nMn} converges weakly to the exponential variable with

parameter 1.

PROOF :
Fn(x/n) =] - (I-x/n)n --§[nMn <x])
Thus obviously,

lim Pl <xJ)= lim F (x/n) = lim 1 = (l-x/n)" = 1 - &%
n n n

E F(x), x > 0.

By using Taylor's formula with remainder on the logarithm of
e’x/(l-x/n)n, one may verify that for x >0, n=1, 2, ...,

. 2 * 2 3,2

-exp(»g /2n) < [} - F(x)J/[1 - Fn(x/n)] < exp(-x"/2n + x7/6n").

- . 4

S



IV. SEQUENTIAL SEARCH USING NOISY MEASUREMENTS
To the structure of the sequential search problem considered
in earlier sections, this section appends the poésibility that upon

selection of operating point X, at the nth search iteration, the

decision-maker observes
£(xn) +2, o ‘4-1)

wvhere (Zh'}is a sequence of independent random Qa;}ables (fv's).
To begin with, we will assume the Zn's to be identically distributed,
but ways in vhicﬁ this restriction may be rvelaxed will be hentioned.
Physically, f(xn) + zn may be regarded as arising from a noisy meter
which measures f(xn). The above restrictions imply that the noise
chafacteristics of the meter are independent of previous measure-
ments as well as the magnitude of the quantity being measured. A
search procedure S3 will be revealed under which 1/n jgl L(xj,f)
converges to O in probability for all Lebeséue-measureable functions
£, re;ardless of ihe,commoﬁ distribution of the zi'é. In contrast
to the noiséless case, a lower bound to the rate of convergence is
not availaﬂle. Connection Af cur study here to related results in
the theory of stochastic approximatiqn>and Kushner theory will be
mentioned.

In the theorem to follow, the restriction that the Zn's be
independent random variables 1denticaliy distributed as Z is
assumed to be in force. "Noisy measurements" refer to pb;ervations
of thé form (4.1) (in contrast to f(xn), which is considered a

Ynoiseless measurement™). As in Section 3, F is the set of Lebesgue-

measureable functions on ¥, .the unit interval.
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Theorem 9: One may compute & search procedure S, on noisy measure-

3
ments under which i
o | :
i/ 2z L(x.,£) + 0 almost surely
=1 !

_ for all noise distributions Z and all feF for which there is a

sequence (wn) such that L(wn,f) >0, n -'1, 2, ...; and

Mm L6 = 0.

Remark: For piecewise continuous functions £, this last restriction

is satisfied if f does not assume its maximum on a plateau.

PROOF: The description of the search procedure S, uses the following

3
notation: {u(n)} is an observation of a sequence of independent
rv'? {u(n)} uniformly distributed on X. RN(j) denotes the empiric
distribution function constructed from the qbse;vationsvwhich, |
during the course of the search, have been made-at u(jd), j=1, 2, ..
(An eﬁpiric distribution function Fn cons;ructed from any sequence

n . . :
{xi}iEI of n real numbers is the cumulative distribution function

determined by the expression

. . . n
nF (x) = number of elements x, of {x.} £ such that x, € x.
° 3 Ve 3

Fu(j) is the cumulative distribution function (cdf) for the rv

£Qu(3)) + 2; i.e.,- X .
Fu(j)(z) =F,( + £Qu(3),  for eve?y real z.

More generally, F_ is the cdf of £(x) + Z. 1If H(x) is any real
function, the norm ||H|| = sup, yH(x) - {k(v)} is a sequence of

integers such that if n > K(v), then for any cdf F, and empiric

18
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distribution function Fa.constructed from n independent observations

distributed as F,
CRLHF - F_II 2 1/v] < 27V (4.2)

Massey [10] gives an algorithm capable'of computing 2 minimum such
number K(v). {M(v)} is a sequence computed inductively by the

following rule:

M(2) = 1.

MV) = M{v = 1) + A(v) + v K(¥), vy 2
where A(v) is some positive integer such that
M(v-1) + v R(V) + (v + 1) RK(v + 1) [A(v) < 1l/v.

Raving described {K(v)} and {M(v)}, we are in a position to reveal

the search procedure 53.

Step 1: .

For each iteration v, v = 2, 3, ..., of these steps 1-3, the

points (xn}gizi:§x(v)

{u(i): 3j=1, 2, ..., v}, so that each u(j) is sampled K(v) times.

are chosen, at each n, from the set of points

i

Therefore, by time M(V) + vK(v), A -

PLIIF SI/MN, §=1,2, e, vI>1 =270, (4.3)

Nes) - Fup !

Step 2:
At time M(v) + vK(v), 8 positive integer v* < v is selected .

such that for every real number z,

Fueoty @ 2 Fyg (@) - 2/v ~ for 1 sk sv. (4.5)



1f no.such v* can be selected, v* is chosen arbitrarily.

Step 3:
At times n, M(V) + vK(v) < n < M(v + 1), X, " u(v¥). At time
M(v + 1), step 1 is repeated, with v increased by 1. Toward out-

lining a proof that S., as just described, possess the property

3
asserted in the theorem, it is necessary to recognize that with
- probability 1, (4.4) will hold for all but finitely many v. For

demonstration of this, let u(v') be any number such that
Then for all z and all i < v, .
F“(v,)(z) = Fz(z + £(u(v'))) 2 Fu(i)(z) = Fz(zv+ f(é(i)))';.:

The event (which will be denoted by B(v)) that RN S

F - F
NG T )
implies, by the triangle inequality, that for j < v,

= > Fyehy

R FN(V')

and thus (4.4) holds with v*¥ = v'. Note that by construction of

- 80

I Lol sy, 1sjisv UG5y

(z) - 2/v, all real z éf,i;*'

{xev)},
«© o« ‘
Z PBWMH < 2 2V <¢w
v=l v=2

and consequently, by the Borel-Cantelli lemma, B(V) bccupsifor butl;;:

finitelyvmany v, concluding our asgertion that for all but finitéif‘

many v, concluding our assertion that for all but finitely many Q,

- -
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\'y* can be picked to satiéfy (4.4). We will hereafter assume without
comment that v always has the property (4.4). As our only concern

is with limit theorems, ehis assumption will not lead us astray.

The completion of the proof that 53 leads to the convergence
a .
of 1/n 1.7_.'1 L(xi,f) to 0 is at hand. By the choice of M(v) and A(V),

we have that ait all times Q during the vth iteration of steés 1-3

{v > 2) that

Number of Observations x,, 1<i<Q, taken at (v-1)* or wl/Q> (v—l)-lv,

i,

and thus for all n >_M(3),,

e

- - - n -
1/n I L(xi,f)
i=]

< 1/v + ((v = 1)/v) max {L(u(vs),f), L(u(({v - 1)*),£)}. (4.6)
The proof is completed by showing that almost surely,
LQu(v*),£) + 0.

Let x' be any point in X such that L(x',f) > 0. Then certainly,'
some element u(h) in an observation of {U(v)'} gives £(u(h)) p f(x').

If H is a number such that

' 6/4 < “Fxl - Fu(h)”’

then for all v > max {H,h}, if f(u(j)) s £(x"),

I"N(\'")("‘) zFu(h) (z) = 2/v >F )(2) + 6/H - 2/v

u(j

-
-

> FN(j) (z) + 6/0 - 4/v>F (z) + 2/v, (all real z),_.

N(D)

which implies that j chn’not be chosen to satisfy (4.4) for v*. From

this we deduce that



Unm sip L(u(v+),£) € L(x',£). R
Let fwn} be a sequence, as in the hypothesis of the theorem, such
that.L(wn,f) > 0 and {L(wn,f)}'* 0. Then (4.7) holds almqét surely
simultaneously for all the v (in place of x') and we conclude that

with probability 1,
1im L(u(v*),f) < infnL(wn,f) = 0.

Theorem 9: One may compute a search procedure S.' on noisy measure-

3

- ments under which

n T
(/n) 2 L(Xi,f) >0 in probability
i=1 r

= ~

for all noise distributions and all feF.

PROOF: 83‘ differs from 83 only in step 2, where for 53' the

restriction is made that v  be the greatest positive integer v

such that for every real number z,

k)(z) -2y, 1% ks v. (4.8) o

+

* ety ) > By

Observe that 33' is a version of 83, and consequently it achieves
convergence under the hypothesis of the preceding theorem.
In the absence of a sequence {w“} as hypothesized in the

previous theorem, there is a number t' such that

mE>t' =0 and mEf=t'> O. (4.9)

(As in Section 3, we use the abbreviation m{f > bJ to denote the *
Lebesgue measure of the domain of improvement {x:f(x)> b}). We )

use the notation of the proof to the preceding theorem. Let h be



83

An integer (surély there is one) such that f(u(h)) = t'. Then for

v % h, under 83', v becomes v* by virtue of one of the events A(vV)

or B(v) (in the sigma-field of the process determined by 54 and £)

occurring: N . .

AW EU)) = et

B(V): B(n) = B, (V) B,(v)-

where .
Bl(v): t'> f(u{v)) 2 t' - a(v) A
and . : L

Bz(v): PN(V) satisfies - €4.8)

Here a(v) = inf {a:l‘li‘_t. - FaH.S 2/';' .

Note that ?[A(v)UB(v)] 2 P[A(V)] = m[f = t'] which is positive and
independent of v. Thus under 33', infinitely many different v are

chosen as v*% Qur proof consists of showing (below) that
15 PIB ()| A()uB(v)] = 0 (4.10)

Note that A(v) and Bl(v) are independent of {U(k): k # v}. Thus
(4.10) fmplies that lim P £(U(v*)) = t' = 1, which in turn implies

that {L(U(y*),f)} converges in probability to 0. This (in view of

equation (4.6)) concludes the proof.

°

We proceed now to the demonstration of (4.10). o ‘
PIB(V)|A(VIUB(v) ] £ P B, (v) [ACV)UB(W)]

= P! '>'7 f£QU(V)) =2t' - a(v)]/P[:t'z fQu(v)) it' -a ()]

- - -
.

As {a(ﬂv)} converges to O monotonically, by the continuity proPerty"

of measures, o



lim PLe' > £QUE)) 2 ' - a(] = 0.

Similarly,

-y

limv Plt*2 £QU(V)) 2t' - a(v) ] = PLE(U(V)) = t'] = m[f = t,']>(.>"

‘Thus P[B (V) [A(v)UB(v) ] +0, which in turn implies that

PIB(WIA(VM)yB (V)] + 0.

ué discuss briefly possible extensioﬁs of the prec;ding théor§
. for search_procedures using noisy measurements. First we mention
that Qnder the hypothesis of the preceding theorem (Theorem 9),
search procedures may be devised to achieve conQergence in"probébility
of~L(Xn,f) to 0, for all feF. One way is to choose M(v) (described

" in the proof to Theorem 9) randoﬁly and sufficiéntly sparsely,

-

Next we consider different assumptions about the ngisé process.

The search procedure 53

regardless of the noise distribution Fz. Qur results cannot

' described in this section is effective

essentially be improved, for generally even if Fz is specifiéd in

advance, uniform (on F) lower bounds for convergence cannot be
obtained. On the other hand, if the noise distribution is available

in advance, we may let the noise depend on the bperating'poin; XEY .

That is, if the measurement made at operating point x is the random’
variable f(x) + Z(x), Z(x).being a random variable with known cdf F¥,
then there are search procedures which achieve convergence in

probability of » ;!ﬁﬁﬁwA*
e - - - ‘n .
i=1

H o n

and A
11) L(X,,f) » 0. -



for éll measureable functions f

In the notation of Theorem 8, let us sketch how convergence - ]

{) may be achieved, using an iterative search procedure. Step one

begins at time M(V), v2 2. M(2) =1
Steg.lz Find a number é:l such that AR e

HetP e - P v arwvnirs 28, 1si%v.
Sample at u(j), (1 £ j € v), sufficiently many times so that

R - ' - Vv
x»ltln}‘mj ) Fll< sj, for 1€ 4 vl >1 -2, (4.11)

)

u(j)‘ is the distribution of Qi) + 2@u(§)). K(v) is

defined to be the number of observations required to achieve (4.11).

in (4.11), F

Step 2: Define f'j(v), if possible, so that

i -y B NIl < &  (4.12)

Fren

v* is defined to be the greatest integer k(k s v) such that

£', (V) = max ’(4.13)-

1sjsv f'j(")"

Step 3: 1f step 1 began with the M(v)th observation, sample at
ﬁ(v*) until time M(v) + K(v) + A(v), where A(v) is a positive integer

large enough that

M(V) + K(Vv) + K(v + 1) JA(V) < 1/v.

Increase v by 1 and return to step 1, setting the new M(v) to .

M{v) + K(v) + A(v) + 1.



- -

Notice that if (4.12) and the event in (4.11) are satisfied,

1t ¢z - ) - PP G- ! ‘7 s P - £, - Faep'!

- ‘¢ ||F

. PG - supntl < 28,

which, by choice of Sj, implies that

- - PR
= .-t

) - £y <llv. (4.14)
From this we see that under our search procedure,

PLIE(G)) - £ D] <1y, 1555 v] >1 - 27V, (4.15)

3

The coaclugion tﬁﬁt {Leugy ),f)} converges in probability to O (and

cansequéntly so does l/n izl L(xi,f)’) is readily derived from’(4.6).
We ;lbse this.séction by mentioning related studies. Brooks [s]

mentioned the idea of overcominé noise by repeatedly sampling at

. each operating point. WE have stateé Ehat in Kusﬁner theory [7 ]

it is supposed that £ is a sample anction of a knowp Brownian

motion process. It ishfurfher allowed that the meégurement may bé

corrupted bi Gaﬁssian noise having zero mean and a known varianﬁe,

which is allbw%d tq.éepend on the operating point x. The framework

for computing an optimal search procedure minimizing E[(l[f![- f(Xn))%

is sketched, but it is not proven that these methods yield conver-
gence of the ;bove expectation to 0. |

Our studies are also somewhat related to the subject of "stochastic
approximation,” initiated by Monro and Robbins {113 and placed in an
optimization setting by Kiefer and Wolfowitz [12 3} A definitive

survey of stochastic approximation has been written by Schmetterer

[13]. Briefly, the stochastic approximation problem in determining



the maximun of a regression funct1on may be viewed as the problem
of finding a secarch procedure yieldxng a sequence {x } converging
(either in probabxlity or almos; surely) to x*, vhere x* is the

unique operating point maximizieg f. The stochastic approximation
setting is more general thee g;rs_in that the noise process, while
(as in our s:dﬁies) being indeéendent of earlier pbsereations, may
be annown and yet depend onw¥. - But it is at the same time more
restrictive than our theoryAbeceuse f musé be a fﬁnction which is
unimodal i.e. monotonically increasing for x < x? and monotonically
»decreasing Eor x> x* There are various other_assumptions imposed
on both F and the noise process; the reader is inQited'to consult

the stochastic approximation references for details of this very

deeply researched theory.

V. SUMMARY AND EXTENSIONS

It is evident that the-metﬁods of this papef can be used for
bounded intervals other than the unit interval. In fact, any
Lebesgue set having positive finite measure may play the role ef‘f.
‘Also, no doubt the reader has noticed that while we were assuming
X to be ﬁhe unit 1nterva1,bin all sections but ;he preceding no
testriction, or even changes, are required if ifnstead, X is taken
to be the unit n-cube. Of course, in higher dimension, m{A) is the
multi-dimensional Lebesgue'measure of the set A, and with this

measure, L(x,f) mlf > £(x) } The uniform searches in higher

dimension problems are again uniform searches (in the higher

.
N

dimension X)i« A point where it may not be clear that the theofy can

be extended is in the noisy measuremznt problem studied in the

87



éreceding sectién. -It is not perhaps wgll-knéwn ;hac there is a
way to £indQK(v;uif F and_Fn are n?dimensiqnal cdf's. ﬁevertheléss,
-it is true that for higher dimensions, K{v) can be compéted as
Kiéfer and Holfowtiz have proven.[14, esp. pp.“181-182 3.
fhe K(V) compgted.by means of the preceding reference is not close
.ﬁé ghé-éiﬁimum possible K(v), and it depends on the dimension of X.
With this last exception, our theo;y is independent of dimension.
Exggnsiog bf“our theory to sets X which are unboundeé inter-
; vaI; or other Qets with iﬁfinite lebesgue measure requires mofé
adaptation. One possibility of bringing such sets into the frame-
work~of tﬁe preceding analysis is to accept in place of m, some
iinéar measure m' (Such as the Gaussian prébability measure) which
assigns a finite number to the ;eal iine. One then assumes that
the loss L(x,f) associated with operating at point x is m' [£>£(x)].
Our agélys;s remains valid }f, instead of sampling X uniformly,'
it is sampled according to a proﬁgbility function P sQCh that for
some ¢, T
P[Aj = cum' [A], “all Borel subsets A ¢ X,
A Bayesian might want to follow this approach ;egardi;ss of the
_ Lebesgue measure of X ~in order to take advantage of a priori
ideas aboﬁt the location of maximiiing values of f. |
While on the subject of the ﬁayesiah viewpoidt, we mention
that if a cost ¢ is attached to making each observation, and a loss
L' (L(x,f)), a monotonic function of‘L(xf), is associated with

stopping the scarch when X = X and £ is the unknown criterion

function, then the optimal stopping rule is to stop after the



TIth sample, where I is the greatesc'integer such that

® [L' (L) ] = ELL Mlpypy09)]
He have seen that the distribution of'L(X f) is independent of f
if m[ £>t] is continuous.. Thus the opt1ma1 stoppzng time T may be
determined in advance of mak;ng weasurement. -

1f F is a set of uniformly bounded measureable functlons,
" the uniform bound M being known, and if

L"(x,f> L EOdy, E= {y:£() > £}, |
~ then L"(x,f) <:M a(f>f(x)) and one secs that the preceding theory
is applicable for flndxng search procedures under which the loss,
as measured by L", converges, in the respective senses, to zero.
“We are indebted to our colleague Dr.fA. Wayne ﬂymore, for suggesting
this observation. o :

The goal in this paper has been to delimit what can be~done>ﬁu
by sequent1a1 search procedures when the set of obJectlve functions
is rich enough to include all continuous functions._ Where pOSSlble,
we have sought bounds to the number of observations needed to
accomplish those results that can be accomplished. This goal is
more in tne tradition of automata theory than numerical analysis. 
Toward this goal we have revealed several search procedufes giving
convergence (in various senses) to optimal performance. Many ofm
these results, especially ?n the noisy measurement case, are
believed to be new.

For particular numerical problems wherein some prior knowledge
of tne criterion function f is available, we expect that often

heuristic considerations will yield wore rapid convergence than



. our algorithms. The literature suggests that heuristic "creeping
search" programs (e.g. Schumer and S;eiglitz' €153 ) have been used
for some-time. In any event, in computation, once the designer has
found the number of searches, N,:requiréd to satisfy'his tolerancé
of error, if the criterion function poséesses any regularity whatso-
_ever, it would seem sensible to sample;at'evenly Spaced grid points
'rathe£ than randomly chosen points as per the preéeding #igorithms.
AWe\SUSpect that the procedures we have proposed may have merit if
the function £ is easily evaluated (such as in linear or quadratic
programming problems;.etc.) Regardless of its compugatiopa; perits
(or lack thereof), the preceding anélysis should have practicél
Valhe in pointing out that certain search proﬁlems which are much
more difficult than those currently studied are, in principle at
least, amenable to solution. B

Our vie&point and procédures differ ffom other approaches to ‘
the sequential search problem in that the nature of the démain
space X can be suppressed. As noted above, the.&imension of i
plays little role, and in contragt w;th many other studies, the
closeness-of fhe operating point x ﬁo an dptigiziné point x* is of
no consquence;vit is on the closgkess of f(x) to £(x%) that our

attention focuses,
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